Stuyvesant High School Computer Science MKS65C - Systems Level Programming

teacher: email:

office: Room 301 available periods:

course website: stuyvesant-cs.github.io/courses/mks65/

Course Description:

Systems Level Programming covers the C programming language and development in a linux environment. Over the course of the semester students will learn how to control the main components of a computer (memory, storage, input/output, processor) at a low level. Over the course of the semester students will write a terminal shell as well as network server and client programs.

AP Computer Science is a prerequisite for Systems Level Programming.

Required & Recommended Tools:

- Notebook/Section in binder.
 - All students are required to take physical (pen & paper) notes for this class (barring any required accommodations).
- Github account: https://github.com
- Oline chat/discussion forum.
 - Invitation links will be sent out during the first week of class, you must accept.
- Recommended
 - Access to a linux computer outside of class.
 - If you cannot do this at home, you may always ssh into school computers.
 - See course website (resources section) for help on this.
 - Don't forget about the CS Dojo (307, M-Th, 3:45 5)
- Your notes will be your primary resource, and the most up-to-date information on C and linux will be found through online resources so there is no textbook. If interested, <u>The C Programming Language</u>, by Brian Kerninghan and Dennis Ritchie is the definitive book on C. There are copies at Stuyvesant available to look at.

Course Requirements:

- Treat each other with respect.
- · Come to class on time.
 - Absences and latenesses must be accompanied by a note.
- Participate in class discussions, including the online Q & A forum.
- Submit work on time.
 - There are no exams in this course, your grade will be primarily made up from your submitted work.

Grade Breakdown:

- Participation: 10% (this includes in-class discussions, Q&A participation and group work).
- Work assignments: 70%
 - There will be approximately 2 assignments a week, involving a mix of individual and pair work.
 - These assignments will be posted on the class website.
 - Work grades will be based on how well the required tasks were performed.
 - Late assignments will be accepted up to a week after the deadline with a penalty.

- · Projects: 20%
 - Each marking period will conclude with a larger scale project.
 - Projects may be done individually or in small groups (depending on project).
 - There will be some class time devoted to projects, but they will require outside time as well.
- Work and project submission must be done using github.

Course Outline:

- Unit I: The C programming Language & Memory Management
 - Syntax and variable types
 - printf()
 - Arrays
 - Pointers
 - Strings
 - Separate compilation
 - Dynamic/manual memory allocation
 - struct, union & typedef
 - Preprocessor instructions
 - Project
- · Unit II: Storage & File Systems
 - File permissions
 - · Hierarchical file systems
 - Program file table & open()
 - read() & write()
 - umask() & lseek()
 - File metadata & stat()
 - Navigating directories
 - Program input
 - Project
- Unit III: Process Management
 - Signals & Signal handling
 - Processes
 - fork() & wait()
 - · Executing external programs
 - Parsing strings
 - File redirection
- Unit IV: Interprocess Communication
 - Shared memory
 - Semaphores
 - Unnamed pipes
 - Named pipes
 - Server-Client design patterns
- Unit V: Network Communication
 - IP Addressing
 - Network Ports
 - Network Protocols
 - Using Sockets
 - OSI Network model
- Final Project